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Abstract 

Rural road curves provide one the most challenging features to be negotiated by drivers on high 

speed rural roads. As a result, many drivers make errors resulting in run-off-road and head-on 

casualty crashes. It has been estimated that such curve crashes on curves account for 18% of all 

serious casualty crashes on rural roads in Victoria. In order to address this problem VicRoads 

funded ARRB to investigate and develop a rural mass curve treatment program. 

This paper presents overseas and local research background leading to development of an 

engineering model for categorising curves according to their crash risk. The risk model prioritised 

curves to the right, with greater approach speed, change in speed, narrower pavement and a steeper 

downhill grade. The paper then then describes how this research was used to propose an 

economically viable $100 million road safety funding program using standardised delineation 

treatment packages applicable to each curve along a route. Such an approach is expected to provide 

a consistent level of curve delineation and warning, and thus, condition drivers to better respond to 

the crash risk of the curves ahead. The program is proposed to be applied on selected rural routes 

with a history of run-off-road and head-on casualty crashes. It is expected the program will save 28 

lives and 315 serious injuries over the treatment life. 

Introduction 

The task of driving on a curve represents a major increase in the risk of driver error, loss of control 

and a crash event. This is caused by the centrifugal force due to vehicle’s inertia which needs to be 

constantly countered by side friction and corrective action of the driver. Failure to adjust speed and 

correct vehicle’s direction results in a run-off-road event which is sometimes over-corrected. In 

some cases, such over-correction events result in head-on crashes with opposing traffic. 

In the five-year period of 2009 to 2013, run-off-road and head-on crash types accounted for 38% of 

all serious casualty crashes (i.e. fatal and serious injury) in Victoria, equally proportioned between 

urban and rural roads. On the rural roads, 32% of these crashes occurred on curves. Figure 1 shows 

the breakdown of serious casualty crashes on the Victorian road network by crash type (ROR stands 

for run-off-road, and HO for head-on). 

Overall, run-off-road and head-on crashes on curves accounted for 18% of all serious casualty 

crashes, and 21% of all fatal crashes, on rural roads in Victoria. For these reasons, reducing the risk 

of these crash types on rural roads was seen as a strategic direction in reducing serious casualties. 

There was a keen interest by TAC and VicRoads1 to treat curves in a systematic way across the 

rural road network using low-cost treatments. It was recognised that strict crash history-based 

approaches would result in inconsistent application of treatments along rural routes, as most curves 

have no recent casualty crash history. A risk-based approach was preferred in order to deliver a 

mass treatment of rural curves.  

This paper describes how international research evidence was used to develop an engineering risk 

model for categorising rural road curves according their risk of run-off-road and head-on crashes. 

                                                 
1 The Victorian state road authority; future program’s developer and administrator. 
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Each curve along a given route was assigned a low-cost delineation treatment package consistent 

with its risk category, based on the risk score. Such an approach is expected to provide a consistent 

level of curve delineation and warning, and thus, condition drivers to better respond to the crash risk 

of the curves ahead. Using additional road network data, the model was used to prepare a successful 

business case for a rural curve mass treatment program. The paper then describes development of 

program guidelines and a curve risk categorising practitioner tool. The tool will be used in 

preparation of candidate projects for a TAC-funded mass curve treatment program implemented by 

VicRoads.  

 

Figure 1. Serious casualty crashes in Victoria (2009 – 2013) 

Literature 

Herrstedt and Greibe (2001) proposed one of the earlier approaches to ranking curves according to 

risk. This theoretical approach proposed that the change in speed at a curve (difference between 

approach and design speeds) was the main driver of crash risk. Large change in kinetic energy was 

proposed to relate to crash severity. They proposed a chart which recognised both the magnitude of 

speed change and the approach speed. The key innovation of their approach was assignment of five 

curve risk categories as shown in Figure 2. Each risk category was to be assigned a standardised 

low-cost delineation treatment package. Herrstedt and Greibe (2001) proposed that treatments 

should be consistent, unambiguous, understandable and easily recognisable. This approach would 

create driver association between the surprise element (inconsistency), required braking, mental 

workload and the observed delineation level. It was required that all curves were to be treated along 

a route to create repetition of the experience.  
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Source: Herrstedt and Greibe (2001). 

Figure 2. Curve risk categories 

The risk categories ranged from low (A) to very high (E). Kirk, Hills & Baguley (2002) developed 

this approach further by designing proposed treatment packages as shown in Figure 3. 

 

Source: Kirk, Hills & Baguley (2002). 

Figure 3. Low-cost treatments for different curve risk categories  

Cardoso (2005) developed this approach further in Portugal to address the serious problem of curve 

crashes on rural roads (approx. 31% of all casualty crashes in rural areas). The basic theoretical 

model was replaced by empirically-developed models for estimating average approach tangent 

speed, and average speed through the middle part of a curve. These complex equations used factors 

such as average bendiness (° per km) and average level change (m/km) in the 500 m segment 

preceding the curve, the previous curve radius, pavement width, tangent and curve lengths, and 

presence/lack of sealed shoulders. These models were in essence similar to operating speed models 

used in Australia and New Zealand.  

The calculated curve and tangent speeds were used in Cardoso’s crash prediction models estimating 

crash rates for curve and approach tangent segments, and the ratio of these (VRAC). Cardoso 

proposed then that the curve inconsistency factor (FH) should be based on the product of VRAC 
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and the ratio of approach tangent and curve kinetic energies (Equation 1).  A higher value indicated 

a greater inconsistency of the curve with the preceding tangent. 

 

 𝐹𝐻 = 𝑉𝑅𝐴𝐶 × 
𝐸𝑐

𝑡𝑎𝑛𝑔𝑒𝑛𝑡

𝐸𝑐
𝑐𝑢𝑟𝑣𝑒

 
1 

where    

FH = inconsistency factor  

VRAC = ratio of the injury crash rates on curve and tangent  

Ec
tangent = kinetic energy at the approach speed (J)  

Ec
curve = kinetic energy at the speed on the curve (J)  

The major advantage of Cardoso (2005) and Herrstedt and Greibe (2001) models is that they 

recognised that both the approach speed and speed change are relevant in the crash risk on curves.  

Cardoso developed five curve risk categories based on the inconsistency factor (FH), speed 

reduction threshold (< or ≥ 5 km/h), deceleration threshold (< or ≥ 2 m/s2), and presence/absence of 

sealed shoulders. It appears that approach tangent speed and change in speed were included in the 

risk categorisation process multiple times. It is not clear why this was seen as appropriate.    

As with previous work by Kirk, Hills & Baguley (2002), Cardoso (2005) proposed five standard 

treatment packages increasing in delineation and warning sign components as the risk category 

increased.  

Only preliminary, single-year before/after evaluation of the effectiveness of this approach could be 

identified (Gomez 2005). The approach, combined with other treatments such as speed limit 

reduction pavement and drainage treatments, resulted in reported ‘risk reduction’ of 18% and 

fatality reduction of 46%. Gomez noted that evaluation could not be completed due to crash data 

collection difficulties.  

Development of the curve risk model 

VicRoads sought to develop a curve risk ranking approach with the view to assess all curves on B 

and C rural routes in Victoria. B and C routes are the lower order state-controlled rural roads. They 

carry lower traffic volumes and are typically of a lower design standard than rural highways (A 

routes). Geometric design inconsistencies were more common, especially on C routes, although 

isolated curve improvements have been carried out in recent years in response to crash history at 

individual curves. This added to route-level inconsistency how individual risk level of each curve 

was communicated to a driver. There was a need to develop a curve-specific risk model, and to use 

it to estimate inputs into a business case for a curve mass treatment road safety program.  

Work of Cardoso (2005) influenced the approach, although it was agreed that it was overly complex 

and based on the attributes of the Portuguese road network which may not translate well to Victoria. 

There was insufficient data available in Victoria to develop similar models. Also, there was a 

concern that complex models would require inputs requiring costly and time-consuming data 

collection by practitioners. Such limitations would impede success of a future road safety program. 

It was agreed to focus on developing of an engineering model similar to that proposed by Cardoso 

(2005), but better suited to rapid deployment by VicRoads regional offices.  
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The critical step in the process was to use research evidence for the key risk factors in curve 

crashes. These were obtained from reviewing recently published Austroads projects on rural road 

safety. The initial list of targeted casualty crash risk factors considered were:  

 radius of curvature 

 curve direction 

 clear zone, roadside hazard density, type of hazards 

 the overall alignment standard expressed as curves per kilometre 

 superelevation 

 curve transition – presence, quality 

 sealed pavement width  

 lane width 

 sealed shoulder width 

 unsealed shoulder width 

 grade 

 approach speed  

 change in speed at the curve 

 AADT.  

The quality of the available research evidence for some risk factors was weak (e.g. superelevation). 

Other factors were well researched, but their influence on crash risk was low (e.g. hazard density). 

Other risk factors were correlated with each other (e.g. pavement width, sealed shoulder width, lane 

width and clear zone). After careful consideration, the project team reached consensus to select the 

following risk factors for the model: curve direction, approach speed and change in speed, sealed 

pavement width and grade. Traffic flow, AADT, was not included as it describes exposure to risk, 

rather than the risk itself. It was important to create a model which described the individual driver’s 

risk of curve crash.  

The relative risk for curve direction was derived from new analysis of Victorian rural curve data 

sourced from a recent Austroads project (Jurewicz and Pyta 2011). Table 1 shows that curves 

leading to the right were relatively more likely to have a run-off-road casualty crash than curves 

leading to the left. The risks related to differences in crash rates with the risk value of 1.00 being the 

average crash rate for all curves.  

Table 1. Relative run-off-road casualty crash risk on curves of given their direction 

Curve direction Relative risk 

Left 0.79 

Right 1.21 

Cardoso (2005) developed crash prediction models to calculate crash rate given approach tangent 

speed and speed change at the curve. Two variants were developed: in presence of paved and 

unpaved shoulders. Given that a similar variable, the sealed pavement width, was already included 

in the model, Cardoso’s results were interpolated to account for both shoulder scenarios. The 

relationship between the relative curve crash risk, average approach speed and average change in 

speed at the curve is presented as a matrix in Table 2. 



Peer review stream Jurewicz 

 

Proceedings of the 2014 Australasian Road Safety Research, Policing & Education Conference 

12 – 14 November, Grand Hyatt Melbourne 

Table 2.  Relative curve casualty crash risks based on approach speed and speed reduction  

  Average speed on the approach tangent (km/h) 
A

v
er
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g
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ch
a
n

g
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in
 s

p
ee

d
 (

k
m

/h
)   60 70 80 90 100 105 

1 1.00 1.16 1.33 1.49 1.66 1.74 

10 2.12 2.48 2.83 3.19 3.54 3.72 

20 2.67 3.11 3.56 4.00 4.45 4.67 

30 3.05 3.56 4.07 4.57 5.08 5.34 

40 3.35 3.91 4.47 5.03 5.59 5.87 

50   4.21 4.81 5.41 6.01 6.31 

60     5.14 5.75 6.38 6.70 

70       6.04 6.72 7.05 

80         7.02 7.37 

90           7.66 

Source: adapted from Cardoso (2005). 

The analysis of this design feature relating to Victorian rural undivided road data and run-off-road 

casualty crashes was reported in Jurewicz and Pyta (2011). The relationship is shown in Table 3. 

Table 3.Relative run-off-road casualty crash risks for various sealed pavement widths 

Pavement 

width (m) 
Relative crash risk 

< 6  2.70 

6–7  1.69 

7–8  1.57 

8–9  1.13 

9–10  1.00 

Source: Jurewicz and Pyta (2011). 

Similarly, Jurewicz and Pyta provided the relative risk values for the effect of road grade, based on 

run-off-road casualty crashes and on the same sample of Victorian rural undivided roads.  

Table 4. Relative run-off-road casualty risks of positive and negative grades 

Grade (%) Run-off-road relative crash risk 

> 6 2.60 

4 to 6 1.80 

2 to 4 1.40 

0 to 2 1.00 

0 to -2 1.20 

-2 to -4 2.00 

-4 to -6 3.40 

< -6 5.60 

Source: Jurewicz and Pyta (2011). 

At first a simple multiplicative model was created and applied to all curves of radius less than 

600 m on a 400 km sample of rural Victorian B and C roads (200 km of each type)2. Using an 

assumption that risk score should have a normal distribution, the model was iteratively refined by 

                                                 
2 Jurewicz and Pyta (2011) showed that risk of a run-off-road casualty crash was not significantly elevated for curves 

with radius greater than 600 m.  
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adjusting its form and weighting factors. It was expected that majority of curves across the network 

should have low to moderate risk score, a significant minority should be moderate and a small 

minority be of high risk. The final form of the model was as shown in Equation 2.  

Curve risk score = RRdir[(0.6 x RR∆approach speed x RRpavement width) + (0.4 x RRgrade)]                            2 

 

where: 

 

RRdir = relative risk of the curve direction (right, left) 

RR∆approach speed = relative risk of the change in approach speed, including its original value 

RRpavement width = relative risk of the pavement width 

RRgrade = relative risk of the road grade 

The application of the model produced the following distributions of the risk scores shown in 

Figures 4 and 5. 

 

Figure 4. Curve risk scores for C roads 

 

Figure 5. Curve risk scores for B roads 

Risk rating of curves on B and C roads confirmed the assumption, although B roads had 

significantly fewer curves given the same length, and the curves were of lower risk. This confirmed 

the overall higher design standard of B roads. 

To simplify the European approach, only three risk categories were created: low, medium and high, 

as shown in Figures 4, 5 and 6. Visual sense-checking was applied to a selection of scored curves to 
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confirm the model and risk categories produced results credible to drivers, i.e. high-risk curves were 

significantly more inconsistent with the approach tangent, than low-risk curves. 

 

 
 

Figure 6. High-, medium- and low-risk category curves 

This division into three risk categories allowed the introduction of a consistent treatment package 

for each category. The treatments were sourced from the VicRoads signs and linemarking 

guidelines and vetted by VicRoads engineers. The treatments were generally somewhat more 

generous than the guidelines. Many were made dependant on site conditions, mainly the pavement 

width along the route.  

Low-risk curves received minimal treatment consistent with the approach tangent. Medium-risk 

category received the same plus additional warning devices. High-risk curves were to be equipped 

with same as medium plus Chevron Alignment Markers (CAMs) and advisory speed signs. 

Additionally, the worst of the high-risk curves will be also eligible for additional treatments such as 

High-risk 

Medium-risk 

Low-risk 



Peer review stream Jurewicz 

 

Proceedings of the 2014 Australasian Road Safety Research, Policing & Education Conference 

12 – 14 November, Grand Hyatt Melbourne 

hazard removal, pavement widening and safety barrier installation. This level of treatment could 

only recommended by regional engineers on case-by-case basis, following site inspections, where 

additional risk factors were present that were not accounted for by the model (e.g. a high roadside 

drop-off, an intersection, or high number of serious casualty crashes). However, the need to achieve 

a competitive BCR for each route will place constraints on the type and the extent of these 

additional treatments. 

Each treatment package had an associated crash reduction factor (CRF) estimated from the 

combination of treatment CRFs, as shown in Table 5. 

Table 5. Proposed treatment packages for each curve risk category, with estimated CRFs. 

Curve type  Treatments Combined CRF 

Low risk 1) Guideposts 

2) Edge line (only if pavement width allows) 

3) Centreline (only if pavement width allows) 

22% 

Medium risk 4) RRPM (only if linemarking exists or is possible) 

5) Audio-tactile (only if pavement width allows) 

6) Curve warning signs for isolated or group of curves 

51% 

High risk 7) CAMs 

8) Advisory speed signs 

9) Pavement widening, hazard removal, safety barriers 

(site-conditional) 

57% 

As an economic modelling exercise, the correct treatment was hypothetically applied to each risk 

scored curve in the 400 km road sample. Where curve run-off-road and head-on casualty crashes 

were recorded in the previous 5 years, the relevant treatment CRF was applied (only some curves 

had past crashes). Thus crash savings could be calculated separately for B and C routes. Similarly, 

treatment costs were estimated using recent historical unit cost rates provided by VicRoads. This 

approach allowed approximation of risk category and treatment package distribution on B and C 

routes and of the expected program BCRs for each road category. 

Rural mass curve treatment program development 

The economic exercise was sufficiently encouraging to extend it into a network-level economic 

model of program benefits and costs. A proposal was developed and submitted for TAC 

consideration. TAC approved a $100 million sub-program under the $1 billion Safe System Roads 

Infrastructure Program (SSRIP) funded by the TAC, to address these prominent crash types on 

curves of B and C rural roads. 

The program is to be applied on all B routes and on the worst performing 6% of C routes, which 

have 35% of curve run-off-road and head-on serious casualty crashes. The selection of candidate 

routes for consideration in this program is based on the historic number of serious casualty run-off-

road and head-on crashes occurred on curves of the whole route. This approach ensures only routes 

with the highest collective risks are included and the highest return from investment can be 

achieved (ranked by BCR and dollars per serious casualty saved). While only 6% of C routes are 

proposed to be treated, the high number of curves on this part network demands the greatest 

expenditure. Treatments in Table 5 will be applied according to risk rating of each curve on the 

selected routes and local engineering input.  

The expected program-level crash reduction factor of 33% is expected, with 28 lives and 315 

serious injuries saved over the 15-year life of the treatments. The program is expected to deliver a 

BCR of 3.7, or the cost of $116,618 per each serious casualty saved.  
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Program guidelines and curve risk rating tool 

Program guidelines were developed to assist regional road safety engineers in preparation of 

candidate projects. VicRoads used its crash database to rank B and C routes based on curve run-off-

road and head-on crash history per kilometre in the latest 5-year period. Top routes were prioritised 

for further assessment by regional engineers in the first year of the program. 

The risk model was converted into a practitioner tool in Microsoft Excel to enable rapid risk 

assessment of all curves along any selected route using Gipsi-Trac data3 as a source. Gipsi-Trac 

calculates instantaneous traffic speed which was used by the tool to estimate average approach and 

curve speeds. The speed profile along the road was calculated within the tool using acceleration 

rates for straights sourced from Austroads (2010) and the speed limit as an upper limit. Gipsi-Trac 

also produces grade information which was used by the tool to calculate average grade through the 

curve. This allowed practitioners to focus on driving each route, checking the appropriateness of 

estimated approach and curve speeds, and measuring the sealed pavement width. Other data may 

also be entered into the spreadsheet by practitioners such as curve crash records, risk category 

override and any additional comments to justify it (e.g. additional risk factors).  Figure 7 shows 

different aspects of the tool. For example, curves different directional categorisation, depending on 

curve direction and grade. Also, the tool provides an easy mapping export option to Google Earth.  

   

 

 

Figure 7. Aspects of the curve risk rating tool 

Once all curves on a given route are assessed, engineers estimate the cost of works, obtain relevant 

crash details from the database, and use the VicRoads tool for estimating the project BCR. All 

candidate projects in this program which are above the funding BCR threshold nominated by TAC 

are to be funded.  

                                                 
3 GipsiTrac provides a set of geometric road attributes with GPS coordinates at 10 m intervals for the entire state road 

network. Calibrated digital video is also available enabling measurement of other attributes such as widths and lengths.   
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Discussion 

A crash-predictive statistical model based on the target crash group and B and C road network data 

would be a preferred tool for risk-rating curves. The modelling process would identify the 

statistically significant factors and quantify their influence on crash risk. The reason why an 

engineering risk model was chosen instead was that there was insufficient data available to create a 

viable statistical model. Modelling multiple independent variables using zero-inflated road segment 

and crash data relies on very large data sets (most curves have no crash history). Crash modelling 

experience gained during recent Austroads projects using the low-volume Victorian rural road data 

suggested that a sample of several thousand kilometres or B & C curve segments would be required 

(Jurewicz and Pyta, 2011, Jurewicz et al. 2012). Such data sets were simply not available in 

Victoria, given that curves constituted only 10% of the targeted network.  

The engineering risk model based on literature findings offered a more efficient way of building a 

model. The subsequent sense-checking on-site provided further confidence that curve crash risk 

categories were assigned accurately. Addition of further flexibilities in the program guidelines (e.g. 

case-by-case assignment of safety barrier and shoulder treatments) provided further assurance that 

risk factors excluded from the model would be considered.  

Still, the engineering model presents certain limitations. For example, the role of superelevation 

could not be accounted as evaluation of this risk factor was not well documented in published 

literature. This aspect should be investigated further, as pavement superelevation at curves is a 

common treatment for run-off-road crashes.  

One limitation of the overall approach is that the model and the funding program recommend 

mainly delineation treatments. They do not seek to address en-masse other underlying causes of 

curve crashes that may require more substantive works, e.g. realignment, or pavement 

rehabilitation. Feedback from regional engineers during development of the funding program 

guidelines suggested that pavement regulation problems, potholes and poor skid resistance were 

increasing risk factors behind curve crashes. On some routes, recreational motorcycling was also a 

key driver of curve crash risk. These factors may need to be accounted for by regional engineers 

and fed back to VicRoads for consideration in future asset management budgets on B and C roads. 

Future risk models should consider inclusion of such factors where data permits it. 

Conclusions 

This paper showed how overseas and local research evidence was combined to develop an 

engineering crash risk assessment model for ranking of curves. A funding program and project 

development guidelines were developed to assign standardised delineation treatment packages 

according to each curve’s risk category. Such approach will provide consistent level of curve 

delineation and warning along selected routes, and thus, condition drivers to better respond to the 

crash risk of the curves ahead.  

The risk model was used to secure funding for a $100 million rural curve mass treatment program 

to be rolled out across Victorian B and C roads over ten years. A practitioner tool was developed to 

deliver rapid ranking of curves on prioritised routes. Estimated benefits included savings of 28 lives 

and 315 serious injuries over the life of the treatments.  
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