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Abstract
The driving task requires sustained attention during prolonged
periods and can be performed in highly predictable or repetitive
environments. Such conditions could create hypovigilance and
impair performance towards critical events. Identifying such
impairment in monotonous conditions has been a major subject of
research, but no research to date has attempted to predict it in real-
time. This pilot study aims to show that performance decrements
due to monotonous tasks can be predicted through mathematical
modelling, taking into account sensation-seeking levels.

A short vigilance task sensitive to short periods of lapses of
vigilance, called Sustained Attention to Response Task, is used to
assess participants’ performance. The framework for prediction
developed on this task could be extended to a monotonous
driving task. A Hidden Markov Model (HMM) is proposed to
predict participants’ lapses in alertness. A driver’s vigilance
evolution is modelled as a hidden state and is correlated to a
surrogate measure: the participant’s reaction time.

This experiment shows that the monotony of the task can lead
to an important decline in performance in less than five

minutes. This impairment can be predicted four minutes in
advance with an 86% accuracy using HMMs. This experiment
showed that mathematical models such as HMM can efficiently
predict hypovigilance through surrogate measures. The
presented model could result in the development of an in-
vehicle device that detects driver hypovigilance in advance and
warns the driver accordingly, thus offering the potential to
enhance road safety and prevent road crashes.

Keywords
Monotony, Fatigue, Vigilance, Hidden Markov Models,
Sensation seeking

Introduction
Drowsiness at the wheel has been identified globally as a major
cause of road crashes. Inattention and fatigue are reported as
contributing factors in 6% and 5% of fatal crashes, respectively,
in Australia between 1992 and 2006 [1]. It is difficult to
reliably measure the influence of such contributing factors so
that such estimates are likely to be underestimated. This is
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supported by the survey conducted by McCartt et al. [2] where
55% of 1000 drivers had reported to have driven while drowsy
and 23% had fallen asleep while driving without having a crash.

Boredom, fatigue, monotony and sleep deprivation are factors
that induce sleepiness and drowsiness. It results in decreased
attention and impaired information processing ability, and
impairs decision-making capability. These factors increase crash
risk due to driver inability to react to emergency-type situations.

Most research on vigilance-related impairments focuses on
sleep-deprived participants. However, there is evidence from
crash data and from simulated driving studies that vigilance
decrement could occur during daytime, especially on
monotonous roads [3]. Driver hypovigilance is often attributed
to fatigue, but it can emerge independently of time on task; it is
more frequent in monotonous road environments, where task
demand and stimulus variability are low and moderate sustained
attention [3, 4]. Also, the profile of drivers has an effect on the
likelihood of being involved in a crash due to hypovigilance;
extraverts and high sensation seekers are at a higher risk [3].

Driver self-assessment questionnaires have been used to evaluate
their vigilance state. Such a subjective approach is not
applicable on monotonous roads [5], suggesting the need for
an objective mathematical model to predict vigilance decrement
during driving. The most reliable assessment of vigilance is
obtained by electroencephalography (EEG) [6]. However, such
a device is too obtrusive to be deployed in vehicles.

Driving performance is impaired during vigilance decrement
and surrogate measures from the driver, the car and the
environment can be used to assess such impairment. This paper
presents a pilot study designed to assess the feasibility of
predicting performance decrement during a monotonous task.
A low-demand, lab-based vigilance task is used to isolate and
simulate impairments due to monotony in a vigilance task. A
theoretically sound measure of sustained attention called
Sustained Attention to Response Task (SART) is used in a
controlled lab-based vigilance task experiment. The SART is a
computer-assisted paradigm where participants are asked to
respond to non-targets and not respond to targets [7]. Our aim
is to predict decline in performance during a short,
monotonous vigilance task using surrogate measures (reaction
times). Such prediction also takes into account inter-individual
differences through sensation seeking levels.

Background

Monotony, vigilance and performance

Vigilance is defined as the ability to sustain attention to a task
for a period of time [8]. Vigilance fluctuates and is an issue in
terms of road safety when decreasing. This particularly applies
to monotonous environments where driving is largely reduced
to a visual vigilance task (lane-keeping task). Vigilance tasks are
the paradigm used to study sustained attention and its vigilance
decrement. Vigilance can be classified to define whether an
individual is able to perform a task with the expected

performance. Duta et al. [9] developed such a classification
from the classification of the sleep-wake continuum obtained
with an EEG [10]:

• Alert: corresponds to responsive participant, capable of
performing a task with full to acceptable performance

• Hypovigilant: corresponds to the participant no longer
able to perform a task at an acceptable level of
performance

• Sleeping participant

• Unknown.

Vigilance level is often assessed automatically by an algorithm
through the estimated performance (from 0 to 1) of a vigilance
task (particularly with neural networks). In this case, results
from the model can be used to classify the vigilance level by
using the following method [9]:

• Alert: 0.7-1

• Intermediate: 0.3-0.7

• Hypovigilant: 0-0.3.

Hypovigilance can be assessed through psychomotor tests (for
instance, by reaction time tests), since a reduction of
performance in such tests is interpreted as a sign of decrease in
vigilance [11]. A loss of performance usually implies that the
individual suffers from a decreased ability to maintain vigilance.
Such psychomotor tests are expected to perform particularly
well as an index of vigilance in monotonous contexts. When the
task is monotonous, responses are automated, leading to short
reaction times and poor performance [12]; and such responses
are direct consequences of a decline in vigilance. This is
supported by the fact that performance during a sustained
attention task is correlated to changes in the EEG power
spectrum at several frequencies (relatively variable between
subjects but stable within subjects) [13].

Factors that have an effect on vigilance can be divided into two
categories: endogenous and exogenous factors. Endogenous
factors are associated with long-term fluctuation of alertness
that emanates from within the organism, whereas exogenous
factors are linked to the task itself or the interaction between
the driver and the outside environment.

Among the endogenous factors are physical and mental fatigue,
sleep deprivation and task duration. Personality dimension (age,
gender, mood and particularly sensation-seeking level), time of
day (circadian rhythms), caffeine and other stimulants, and
cognitive task demands are also endogenous factors [11].

Exogenous factors include complexity and monotony of the
task, and environmental factors such as noise, ambient
temperature, and frequency and variation of stimulation [10].
This is particularly the case when driving on a highly predictable
highway where, because of lack of stimuli (or repetitive ones),
the driver pays less attention to the road situation [14]. These
numerous factors result in complex and strongly interrelated
phenomena regulating vigilance. The impacts of the different
factors leading to changes in vigilance performance are not of
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the same order. Stressors such as heat, noise and circadian effects
are of low impact on the performance compared to fatigue,
monotony and/or boredom [15].

Each individual has their personal optimal level of stimulation
and arousal required to perform well. This can be measured
through the Sensation-Seeking Scale. Sensation seekers are
people who need varied, novel and complex sensations and
experiences to maintain alertness. They require greater arousal
than non-sensation seekers to perform well [16].

The profile of drivers more likely to be involved in fatigue-
related crashes was determined in a simulator experiment [3]. In
this experiment, the impact of the driver's personality on decline
in vigilance was studied. Sensation-seeking drivers are able to
take physical and social risks to achieve varied, complex
sensations and experiences. This factor can be more or less
developed, but it leads to risk-taking driving and negative
reactions to monotonous driving. High sensation seekers
experience vigilance decrement faster than any other group [17].

In this experiment an adaptation of the vigilance task SART is
used where participants are asked to respond to non-targets and
not respond to targets. In such an experiment the vigilance as
assessed by performance has been shown to depend on the level
of monotony and is correlated to reaction times (RTs) [18, 19].
The SART was chosen since performance during this
continuous task correlates significantly with everyday life
attention failures [20]. The authors are aware of the research
debate related to the validity of the SART as a vigilance proxy
[21]. However, this study makes the assumption that the SART
induces hypovigilance.

Such a vigilance task is used in this paper to show the feasibility
of forecasting vigilance decrement using surrogate measures.
This study uses reaction times and error measurements obtained
from a SART experiment to validate a framework that predicts
vigilance decrement before it occurs. Such a framework can be
extended to a monotonous driving task using EEG
measurements as a vigilance-level reference and various
surrogate measures from in-vehicle sensors [19, 22]. Larue et
al. [23] have shown on a driving simulator experiment that
speed, lateral position of the vehicle and physiological
measurements – such as heart rate variability, blink frequency
and electrodermal activity – are potential surrogate measures of
driving performance impairment during monotonous driving.

Mathematical model for prediction

Vigilance decrement can manifest quite early on [24] and
change quite abruptly during monotonous vigilance tasks. This
can be well described by discrete modelling. Performance,
defined as the accuracy of target detection, is categorised as
presented before. We aim to predict this performance through
surrogate variables that are correlated to the ability to sustain
attention.

Research has shown that such performance models must be able
to deal with inter-individual differences to be implemented

reliably in operational settings. Bayesian forecasting is widely
used to overcome this limitation. Indeed such models can
handle these differences even when prediction is applied to
individuals not studied beforehand [25]. Among Bayesian
models, Hidden Markov Models (HMMs) have been used to
model numbers of real-life problems, such as driver manoeuvre
recognition [26]. Larue et al. [19] have also shown that
Bayesian models provide better estimates of performance from
surrogate measures during the SART as compared to neural
networks and Generalised Linear Mixed Models. HMMs
combine independence assumptions making the model
numerically computable with field knowledge that vigilance
decrement is the cause of reaction-time variations [27].

A Hidden Markov Model is designed to model a sequence of T
observations data (at time t=1,2,…T), which is the
consequence of an unobserved (hidden) variable [28]. Here the
unobserved variable is the vigilance level Vigt at time t. This
variable is the cause of other random variables, the surrogate
measure RTt at time t in this study as suggested by previous
research done by Larue and colleagues [19]. These variables
must have the following conditional independence properties
for each time t [29]:

• given Vigt-1, the sequences {Vigt:T, RTt:T} and {Vig1:t-2,
RT1:t-1} are independent, where the notation Aa:b=(30) is
used (Markov property of order one)

• given Vigt, RTt is independent of the sequence {Vig-t, RT-t},
where the notation
A-t={A1,…, At-1,At+1,…, AT} is used.

In the case of a Hidden Markov Model with discrete states and
discrete observation sequences, the model is completely
characterised in terms of [28, 31]:

• number of states in the model, say N. Here the random
variable Vigt takes its values in the set S={alert,
intermediate, hypovigilant} so that N=3

• number of distinct observation symbols per state. Here it
is the reaction times values once categorised

• transition probability matrix giving the probability to go
from the state Si at time t to the state Sj at time t+1

• observation symbol probability distribution

• initial state distribution.

The training of the HMM is done through Bayesian learning
from the given hidden and observation sequences. If the hidden
state is not available during training, the Baum-Welch algorithm
(adaptation of the EM-algorithm applied to HMM training)
can be used. Then the model can be used for prediction (see
Figure 1). The Viterbi algorithm is used to infer the value of
the vigilance state given the reaction times [28]. This algorithm
determines the states sequence, respecting the transition
probabilities, that is the most likely to occur with the model
used. Then predicting the next vigilance state can be done using
the transition probability matrix.
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Figure 1. Prediction methodology with HMMs

Method

Participants

Forty students of the Queensland University of Technology
(QUT), 8 males and 32 females (mean age = 22.6 years, SD =
9.2), volunteered to participate in this study. All subjects
provided written consent for this study, which was approved by
the QUT ethics committee. Students undertaking the first year
psychology subject received course credit for their participation.

Experimental design

Two 5-minute adaptations of a continuous sustained attention
to response task (SART) [7] were run on an IBM-compatible
computer using E-Prime. The conditions varied in terms of task
monotony, with two different settings for target appearance:
probability 0.11 (low target probability) and probability 0.5
(high target probability). The first probability creates a
monotonous condition where a response can be predicted and
leads to automatic responses. The second probability, with a
markedly higher stimulation, is a non-monotonous condition
and results in a non-automatic response mode associated with
lower response predictability [4].

Experimental conditions

This experiment was designed by Michael and Meuter [4]. Two
hundred twenty-five single digits (ranging from 1 to 9, height
of 29mm) were displayed randomly for 250ms in the middle of
a computer screen. An inter-stimulus interval of 1150ms was
used with a mask (height 29mm) consisting of an ‘X’. The
chosen target stimulus was the display of the number 3. When
a stimulus different from the target stimulus was displayed, the
participant was asked to press the spacebar as fast as possible,
and when the target number was displayed, action required was
to withhold the response (that is to say, not press the spacebar).

Procedure

Participants were tested individually in a quiet room, between
9am and 3pm, in a session lasting approximately 45 minutes.
They were randomly assigned to two groups, each of which
performed five short vigilance tasks, as follows. Each participant
performed a monotonous then a non-monotonous task,
followed by one of various types of monotonous tasks (this task
formed part of a larger study and will not be further described
here). Finally, there was a repetition of the monotonous and

non-monotonous tasks, participants of the second group
performing this sequence in a counterbalanced order with time.

Prior to each condition, participants received written
instructions on the computer screen. The instructions asked
them to respond as quickly as possible to all stimuli, and this
with the highest accuracy possible. On completion, participants
filled out short questionnaires: the Sensation Seeking Scale -
Form V (SSS), the General Health Questionnaire (GH-28) to
screen and eliminate participants for psychiatric morbidity
(found to impair performance using the SART) and a general
background questionnaire (control sleep pattern and caffeine
consumption).

Data analysis

The software Matlab version 7.4.0.287 was used to analyse
data. Responses to target are used to assess vigilance
fluctuations. They are converted into error rates in fixed time
windows (also referred to as performance measure in this
paper), defined as the fraction of targets not detected by the
subject (i.e., lapses) within a fixed window. Due to the small
number of targets in the monotonous setting, a window size of
45 stimuli (targets and non-targets) was chosen to obtain an
average number of five targets in the window in the
monotonous setting. This window size corresponds to
approximately one minute.

The window size was chosen to be the same for the non-
monotonous task. Pearson's linear correlation coefficient
between the reaction times of two consecutive time windows is
computed. The same coefficient is also computed for
performance. This enables us to test whether assumptions
required during HMM modelling are reasonable. Performance
is then divided into states as described in the ‘Vigilance’ section.
The predictor reaction time is computed as the mean response
time to non-targets. Reaction times are normalised per
participant and then categorised.

The sensation-seeking level of the participant is categorised into
one of the following classes: low (less than one standard
deviation (SD) in the available participants sample), normal
(within one SD) or high (greater than one SD) [16].

Six different HMMs are fitted to take into account the impact
of the monotony of the task (monotonous or not) and the
sensation-seeking scale (low, medium and high level). Vigilance
states and reaction times are known when the model is trained.
That way, computing the joint distribution is only a matter of
counting the different transitions from the different
performance states and the probability of observation of the
different reaction times for each vigilance state (Bayesian
learning) [32].

A stratified 10-fold cross-validation is performed to assess the
robustness of the modelling. In this technique, data are divided
into 10 folds. The model is trained on nine and tested on the
remaining one. This is repeated so that each fold is used as a
test sample [33]. A stratified cross-validation was used to avoid
putting high and low sensation seekers in the same fold.
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The most probable performance state sequence at time t using
the reaction times data until time t is computed with the
Viterbi algorithm. This gives the probable vigilance state at this
time. Future vigilance states are then inferred up to four
minutes in advance using the transition probability matrix. The
model's accuracy is evaluated through the capacity to detect
hypovigilance occurrences reliably. Therefore sensitivity and
specificity are reported. Sensitivity measures the proportion of
actual hypovigilance states that are correctly identified as such,
while specificity measures the proportion of non-hypovigilant
states that are correctly detected. Their mean is also provided.

Results
The correlation between two consecutive performance measures
(rate of accurate target detection in a time window) was
ρ=0.70 while the correlation between the mean reaction time
of two consecutive time windows was ρ=0.18. This shows that
vigilance evolution is progressive and depends on the previous
state. Particularly, there is no need to use a Markov property of
order higher than one. Such observation was not true in the
case of reaction times. Reaction times are not equivalent to the
performance level though they depend on it (a reaction time
value does not correspond to a specific vigilance state). This
supports the choice of HMMs, their assumptions being
compatible with the data.

The non-monotonous setting of the SART did not create
hypovigilance, with only two occurrences appearing when
considering all the participants. However, the monotonous
setting resulted in a total of 104 occurrences of hypovigilance
when considering all the participants (out of 200
measurements). Therefore, there was no need to detect
hypovigilance on the non-monotonous setting, and only results
on the monotonous setting were further analysed.

Reaction times (continuous values) were categorised in order to
be used in the HMM. Various numbers of categories were
investigated in order to optimise the model’s accuracy. For each
number of categories N, the range of reaction time values was
divided into N intervals of fixed width.

Best results in terms of prediction
were obtained for 19 categories. The values of the transition
probabilities for the corresponding HMM are shown in Table 1
for each level of sensation seeking.
Table 1. HMM transition probabilities (in percentage) for the
monotonous setting

In this monotonous setting, only low sensation-seeking
participants may stay in the alert state. However, each
participant – independently of their sensation-seeking level – is
highly likely (66% for medium sensation seekers) to stay in the
hypovigilance state once they reach it. This is also apparent
from Figure 2, which provides a graphical representation of the
transition probabilities between the different vigilance states
from time t to time t+1. This figure provides information on
the likely vigilance state at the next time step, knowing the
current vigilance state. The width of the different arrows is
proportional to the probability of a transition. Figure 2a shows
these transitions for the non-monotonous setting for medium
and high sensation seekers. Probability transitions used to make
this diagram for the non-monotonous setting are not provided
in this paper but can be found in Larue et al. [19]. Figure 2b
presents such transitions for the monotonous setting for
medium and high sensation seekers.

Figure 2. Transition
between vigilance states for
the (a) non-monotonous
setting and (b) monotonous
setting (arrow width is
used to highlight the
likelihood of transition)

The trained HMM has been used to make predictions using
reaction times until time t up to four minutes in advance (as
presented in Figure 1). The accuracy of these predictions is
reported in Table 2. The prediction of vigilance at time t has a
mean value of 80.0% (73.1% and 86.9% for sensitivity and
specificity, respectively). This mean increases as prediction steps
increase up to four minutes (t+4), reaching 88.0% (100.0%
and 75.9% for sensitivity and specificity, respectively). This
increase is due to an increase in sensitivity (while specificity
decreases) and results from the high likelihood of finishing the
experiment in the hypovigilant state.
Table 2. Predictions accuracy (in percentage) for the monotonous
setting for different time steps (up to 4 minutes in advance)

(a)

(b)
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Discussion
The state of low performance to targets is observed half of the
time in the monotonous setting and almost never in the non-
monotonous scenario. Therefore, this short vigilance task shows
that the monotonous setting of the task can lead to
hypovigilance, while such vigilance impairment is not observed
in the non-monotonous setting. Furthermore, once the
hypovigilance state is reached, it is very difficult to go back to
better performance (as can be seen by the low transition
probabilities on Table 1 and Figure 2).

Sensation-seeking level changes the way participants cope with
the monotonous setting. High and medium sensation seekers
are not able to maintain high vigilance, whereas low sensation
seekers can. Also high and medium sensation seekers tend to
have an immediate and fast decrease in vigilance, going from an
alert to a hypovigilant state directly with 39% and 26%
probability, respectively. By contrast, vigilance decrement for
low sensation seekers is less abrupt and goes through the
intermediate vigilance level (7% probability to go straight from
the alert state to the hypovigilant state). These results on
sensation-seeking levels impacting on vigilance decrement are in
line with previous research conducted on a driving simulator by
Thiffault and Bergeron [3] where steering wheel movements
were used as a measure of driving performance.

The vigilance decrement can be accurately detected and
predicted up to four minutes in advance through surrogate
measures (here reaction times) using HMMs, with a mean
around 80%. Although the increase in the accuracy as the
prediction step increases is counterintuitive, it can be explained
in this experiment. Independently of the sensation-seeking level,
participants are highly likely to finish the experiment in the
hypovigilant state when the setting is monotonous. Therefore,
it is easier to predict the vigilance state closer to the end of the
experiment, which results in better predictions.

Limitations
Models were trained according to the Sensation Seeking Scale
level, so that a population modelling approach has been used in
this study. Adapting models to each participant should improve
these results. Also, the sample of participants is heavily biased
by age, gender and possibly intellectual capacity compared to
the wider population, due to the sampling population being
university students. Nevertheless, generalisation of the results
found in this pilot study seems reasonable due to the simplicity
of the task involved.

Conclusion
We show on a short vigilance task that monotony can quickly
lead to critical vigilance impairment. Such impairment depends
importantly on the sensation-seeking level of the participant and
is detected through task performance. In view of predicting
hypovigilance during driving, this vigilance decrement has to be

detected through surrogate measures. Indeed, the most reliable
and most often used method to assess vigilance is
electroencephalography, which cannot be implemented
in a real car.

This experiment shows that the vigilance decrement can be
predicted using reaction times as surrogate measures with 80%
to 86% accuracy and up to four minutes in advance. Such
results support the idea of using HMMs to predict
hypovigilance during driving using surrogate measures.
Different measures, such as lane-keeping, steering wheel
movements or eye-tracking performance, have been shown in
the literature to be altered when driver vigilance is impaired.
Such further research could be implemented in an in-vehicle
device to predict driver vigilance decrement and therefore
prevent crashes.
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The Centre for Automotive Safety Research has released the
report, Motorcycling in South Australia: Knowledge gaps for
research, by MRJ Baldock and TP Hutchinson. It is available in
full text online at http://casr.adelaide.edu.au/publications/
list/?id=1184, or in hard copy from CASR.

The aim of this report is to provide an overview of knowledge
regarding motorcycling that can be applied to South Australia.
To this end, recent relevant literature published prior to 2010
was reviewed. Areas of interest include the number of

motorcyclists, the motorcycles they ride, riding exposure,
motorcycle crashes, motorcycling injuries, attitudes, training
and countermeasures. The report is not an exhaustive
examination of these issues, but a general overview allowing for
identification of knowledge gaps in South Australia that would
be suitable for research. An analysis of the costs of motorcycle
crashes in South Australia is provided in an appendix.
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