

Point-to-point speed enforcement: Recommendations for better practice

David Soole, Judy Fleiter & Barry Watson

Road Safety Research, Policing, & Education Conference Brisbane, 30 August, 2013 Centre for Accident Research & Road Safety - Queensland

CARRS-Q is a joint venture initiative of the Motor Accident Insurance Commission and Queensland University of Technology

www.carrsq.qut.edu.au

Overview

- The problem of speeding in Australia
- Point-to-point speed enforcement
- Research methodology
- Recommendations of the research
 - Operational, technological, legislative and privacy, public education, evaluation
- Conclusions

Speeding in Australia

The Speeding Problem

- Positive relationship between speed and crash risk/severity (Aarts & van Schagen, 2006; Kloeden, McLean & Glonek, 2002)
- Speed variability also associated with increased crash risk (Transportation Research Board, 1998)
- A pervasive behaviour in Australia, a major contributor to traffic crashes and related trauma (Australian Transport Council, 2011)
- Arguably, socially acceptable, particularly at low levels
 over the speed limit (Ipsos Social Research Institute, 2013; Fleiter & Watson, 2006; Hatfield & Job,
 2006)
- Punishment avoidance strategies means innovative speed enforcement approaches are continually needed

Point-to-Point Speed Enforcement

Where Is It Used?

- Relatively new approach to Australia and New Zealand
 - Currently operates in Vic, Qld, ACT, SA, NSW (heavy vehicles only) and New Zealand
- More extensively used in the UK, Netherlands, Austria, Italy and some other parts of Europe
- Commonly referred to as 'average speed enforcement' or 'section control'

How It Works?

- At its most basic, a point-to-point system involves:
 - Two or more camera sites along a section of road
 - Cameras may be forward or rearward facing (or both) depending on system requirements
 - Image and vehicle registration data collected at each point and matched using ANPR technology
 - Local processor > Communication network > Back office
 - Average speed calculated by dividing distance between two camera sites by time taken to travel that distance

What it aims to do

Promote reductions in speed over longer road sections

 Achieve greater network-wide effects than cameras that measure instantaneous speeds

What the Research Says

- Reductions in vehicle speeds, especially high-range speeding (Barker, 2005; Cascetta & Punzo, 2011; Charlesworth, 2008; Stephens, 2007)
- Reductions in speed variability (improved headway) (Charlesworth, 2008)
- Reductions in fatal and serious injury crashes (Galata, 2007; Punzo & Cascetta, 2010; Speed Check Services, 2009, 2010)
- Homogenised traffic flows (Cascetta, Punzo, & Montanino, 2011; Collins, 2007; Koy & Benz, 2009)
- Reductions in vehicle emissions and noise (Stoelhorst, 2008; Thornton, 2010)
- High rates of driver acceptance (Crawford, 2009; Schwab, 2006; Walker et al, 2009)

Status of Current Research

- No evaluations from Australia or New Zealand to date
- Majority of empirical research from UK, Netherlands, Austria, Italy & France
- Poor methodological rigour common
 - Comparison/control sites not used
 - Confounding factors rarely controlled for (exposure, regression-tothe-mean)
 - Statistical significance testing typically not performed
 - Some non-independent studies conducted by equipment manufacturers
- However, consistent positive effects are encouraging

Research Methodology

Stakeholder Consultations

- A total of 46 stakeholder organisations
 - Face-to-face, telephone, survey
 - 24 from Australia & New Zealand
 - 22 international (UK, Netherlands, Austria, Italy, France, Finland, Switzerland, Belgium, Slovenia)
- Organisations included:
 - Police agencies, transport and highway authorities, motoring groups, manufacturers of speed detection equipment, other road safety research centres, and measurement and privacy departments within government

Working Group

- Full-day working group
- Involved key Australian and New Zealand stakeholders
 - Police agencies
 - Transport and highway authorities
- More in-depth discussion of issues emerging during the stakeholder consultations

- Site selection based on strict criteria
 - Speed-related crash history across a section of road as a minimum
 - Proactive identification of potential crash sites (eg new residential/business developments)
 - Locations where other enforcement not safe/viable (eg tunnels)
- Complementary rather than a replacement for existing methods

- Not a long-term alternative to addressing underlying road design or maintenance issues
- Other enforcement activities within the enforced section should continue
- Jurisdictions responsible for own policies on enforcement tolerances & multiple infringements

- Continue to operate overtly
 - Advance signage; additional signage within long enforcement corridors
 - No signage at end of enforcement corridor may increase deterrent impact
- Enforcement corridors should have:
 - Minimal opportunities for access and egress
 - Relatively high traffic volumes
 - No foreseeable major infrastructure changes (need to resurvey shortest practicable distance)
 - Minimal impact on other parts of the road network

Technological Recommendations

Technological Recommendations

- Camera mounting approach should maximise capture rates and minimise disruption during maintenance
 - Above lanes (e.g., on a gantry) is best or high side-mounted poles

Cameras:

- Should monitor all lanes (incl. emergency lanes)
- Both rearward and forward facing if feasible, or choice based on requirements
- Plate camera at minimum; scene camera if feasible (can provide verification for evidentiary purposes)
- Monochrome digital cameras with infra-red flash

Technological Recommendations

- ANPR processing conducted at camera site
 - Only data on offending vehicles transmitted to the back office
- Appropriate security protocols required to ensure data being transmitted is safe
- All infringements data should be manually verified at the back office – systems should not be fully automatic

Legislative/Privacy Recommendations

Legislative/Privacy Recommendations

- Prescribed device
 - Equipment approved and gazetted
- Prescribed process
 - Approval of formula to calculate average speed
 - Collection of data from multiple detection devices
 - Average speed as prima facie evidence of actual speed

Legislative/Privacy Recommendations

- Shortest practicable distance
 - Measured independently by a certified surveyor
 - To traceable national standards
 - Re-surveyed following changes to road alignment
- Regular clock synchronisation
 - To a common traceable time source
 - Secondary reference system (to ensure accuracy and safeguard from malfunctions)

Public Education Recommendations

Public Education Recommendations

- Public education campaigns should focus on:
 - How the systems operate
 - How many systems are operating in a jurisdiction
- Should highlight P2P is an effective approach for dealing with persistent, intentional speeders
- While P2P often perceived by drivers as a "fairer" approach, this term should be avoided as it suggests other speed enforcement approaches are unfair

Evaluation Recommendations

Evaluation Recommendations

- Evaluation is critical
 - Very few rigorous evaluations conducted to date
- Evaluations should be costed into plans to implement P2P systems
 - Outcome; process; driver acceptance; costeffectiveness
 - Matched comparison sites; statistical significance testing; control for confounding factors; sufficient baseline and follow-up data periods

Conclusions

Conclusions

- P2P often seen as a "fairer" approach scope to improve overall community acceptance of speed enforcement activities
- Determining how P2P fits into the speed management strategy will differ in each jurisdiction
- Existing research supports increased implementation of P2P systems

Conclusions

- Mobile P2P systems represent a new approach that should be explored further
 - Used for temporary purposes (e.g., roadworks)
 - Scope to increase the general deterrent impact of traditional mobile speed cameras

Future Research

- Must improve scientific rigour of evaluations
- Investigate:
 - impact of P2P across the entire road network (e.g., halo effects)
 - utility of mobile P2P systems
 - utility of P2P systems in urban & residential environments

Acknowledgements

- Austroads
- Project No. SS1649
- Austroads Publication No. AP-R415-12
- All Stakeholders

Thank you

Judy Fleiter

j.fleiter@qut.edu.au

David Soole

d.soole@qut.edu.au

