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Abstract 

Over the past ten years, crash prediction models (CPMs) have become the fundamental scientific 

tools of road safety management. However, there is a gap between state-of-the-art and state-of-the-

practice, with the practical applications lagging behind scientific progress. This motivated the 

review of international experience with CPMs from the practitioner perspective: how and why 

should they consider using CPMs? Findings indicate that developing and using CPMs has its 

challenges. However, these may be minimised by increased communication between researchers 

(who develop CPMs) and agencies (who use CPMs), resulting in easy-to-use and transparent tools, 

which will also enable calibrating the CPMs to local conditions. 

Introduction 

Crash prediction models (CPMs) are mathematical equations, which link safety performance and 

risk factors. Over the past ten years, CPMs have become the fundamental scientific tools of 

quantitative road safety management, forming the foundation of the USA Highway Safety Manual 

(HSM) and the Australian National Risk Assessment Model (ANRAM). CPMs may be used for 

various key tasks, including network safety screening, economic analysis and road safety impact 

assessments. However, there are gaps between state-of-the-art (what is published by 

academics/researchers) and state-of-the-practice (what is needed/used by practitioners), which 

limits the practical use of CPMs. On this background, the presented review aims to investigate how 

are CPMs developed and applied. The answers should be of help to a user (e.g. an agency 

engineer/manager) asking about how and why they should consider using CPMs. 

Methods 

The goal of the review was to critically summarize international experience in the development and 

application of CPMs, with a focus on practical use by road agencies. In this regard, both scientific 

and practice-oriented literature was retrieved based on the following criteria: 

• Sources: 

o academic: Web of Science and Scopus, including selected references (snowballing) 

o practical: reports of agencies (e.g. FHWA, Austroads, NZTA) 

o both: ARRB Knowledge Base, TRID database, reports of European institutes, EU 

project deliverables 

• Keywords: accident prediction model, crash prediction model, safety performance function 

• Language: English 

• Time frame restriction: none 

To focus on the typical road settings (the main road network, i.e. motorways/freeways/expressways 

and national roads), the following specific issues were not considered: 

• Macro/planning-level applications (analysis based on land-use zones in assignment models) 

• Specific CPMs for vulnerable road users, such as pedestrians or bicyclists 

• CPMs for specific site elements (e.g. railway level crossings, bridges, tunnels, etc.) 
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The retrieved materials were mainly from Europe, Australia, New Zealand and North America. In 

order to stress the practical focus, the aim was to select the works related to the most frequent 

applications of CPMs.  

The final literature selection thus focused on developing and using CPMs of typical elements (rural 

road segments or intersections), from the perspective of non-US practitioner, aiming to conduct 

typical tasks, such as road safety impact assessment or network screening. The review is structured 

along the following sections, given by the hierarchical steps of developing and applying CPMs: 

1. Data collection, sample size and time period 

2. Road network segmentation 

3. Selection of explanatory variables 

4. Model function forms and other statistical considerations 

5. Model validation 

6. Using CPMs in network screening 

7. Using CPMs in developing crash modification factors (CMFs) 

8. Using CPM tools 

Previous reviews related to CPMs (e.g. OECD, 1997; Lord & Mannering, 2010; Yannis et al., 2015; 

Basu & Saha, 2017) usually considered some of these steps only, mainly 3 and 4. The presented 

review fills the gap by compiling information on all six steps, followed by summarised challenges 

and opportunities, with available solutions. 

Review 

CPMs express the expected crash frequency and/or severity of a site (e.g. road segment or 

intersection) as a function of explanatory variables. These variables (risk factors) describe exposure 

and other characteristics, related to cross section, road design and other attributes. The typical 

model form is: 

𝑐𝑟𝑎𝑠ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/𝑦𝑒𝑎𝑟 = exp (𝛽0) ∙ (𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)𝛽𝑖 ∙ exp (∑ (𝛽𝑖 ∙ 𝑥𝑖
𝑛
𝑖=2 )) (1) 

where 𝑥𝑖 are explanatory variables, 𝛽0 is intercept and 𝛽𝑖 (𝑖 = 1, 2, …) are regression coefficients. 

The coefficients cannot be estimated by the traditional ordinary least squares. In order to correctly 

consider discrete and non-negative character of crash frequencies, and their negative binomial 

probability distribution, generalized linear modelling (GLM) methods are typically used. 

For crash data, the variance (dispersion) typically exceeds the mean: they are overdispersed. The 

degree of overdispersion in a negative binomial model is represented by overdispersion parameter 

that is estimated during modelling along with the regression coefficients of the regression equation. 

The overdispersion parameter is used to determine the value of a weight factor for use in the 

empirical Bayes (EB) method. This method combines expected (modelled) and recorded (observed) 

crash frequencies, in order to improve reliability of a specific site safety level estimation (Hauer, 

1997). Applications of EB methods are described in later sections of the review. 

CPMs may be used for various tasks: 

1. to explore and compare combinations of individual risk factors 

2. for network safety screening (also known as safety ranking or identification of black spots)  

3. for impact assessments, i.e. assessing safety of contemplated (re)constructions 

4. for economic analysis  

It is to be noted that Task 1 is rather research-oriented; Tasks 2, 3 and 4 represent typical practical 

tasks. 
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Given the range of potential applications, CPMs have been acknowledged worldwide as 

recommended tools, on which rational road safety management should be based. However, at the 

same time, it has been known that prediction modelling is not a simple task (Turner, Durdin, Bone, 

& Jackett, 2003; Eenink, Reurings, Elvik, Cardoso, Wichert, & Stefan, 2008; Elvik, 2010) and 

involve various analytical choices, which are often done without explicit justification. This may 

explain why there are gaps between state-of-the-art and state-of-the-practice; and this may in turn 

limit the practical use of CPMs. For example, a survey among European road agencies found that 

70% of them rarely or never systematically use CPMs in their decision-making (Yannis et al., 

2014). 

According to a review of North American practices (Persaud, 2001), network screening is the most 

common application of CPMs. In Europe, cost-benefit analysis was identified as a common use of 

CPM application (Yannis et al., 2014). 

Regarding the selection of research for inclusion in the review, another distinction needs to be 

made. In 2010, American Association of State Highway and Transportation Officials (AASHTO) 

published the first edition of Highway Safety Manual (AASHTO, 2010), which introduces a set of 

CPMs (referred to as safety performance functions, SPFs, in the HSM) and crash modification 

factors (CMFs). Crash prediction in the HSM has two main two steps: (1) prediction of a baseline 

crash rates using SPFs/CPMs for nominal route and intersection conditions, and (2) multiplying the 

‘baseline’ models by crash modification factors (CMFs) to capture changes in geometric design and 

operational characteristics (deviations from nominal conditions). This approach has gained 

popularity, being incorporated into Interactive Highway Safety Design Model (IHSDM), recently 

adopted in the European CPM (Yannis et al., 2015), and used in the New Zealand Crash Estimation 

Compendium (NZTA, 2016). 

The CPMs/SPFs in the HSM and ISHDM, developed from data in several US states, are not directly 

transferable to other jurisdictions (inside or outside US). Some studies confirmed good 

transferability, mainly between US states (Sun, Li, Magri, & Shirazi, 2006; Xie, Gladhill, Dixon, & 

Monsere, 2011; Bornheimer, Schrock, Wang, & Lubliner, 2012), but some were less successful 

when applied abroad, for example in Canada, Italy or Korea (Persaud, Lord, & Palmisano, 2002; 

Kim, Lee, Choi, Choi, & Choi, 2010; Persaud et al., 2012; Sacchi, Persaud, & Bassani, 2012; 

Young & Park, 2013). Therefore, it is recommended that each country and jurisdiction (e.g. State) 

develop their own specific CPMs. The present review, written by non-US authors, adopts this 

perspective. 

Data collection 

In a theory, to obtain sufficiently representative models, one should randomly sample from the 

population of similar road types or intersections. In this regards, given the variance of crash 

frequencies, several authors recommended minimal sample sizes, such as at least 50 sites (Turner et 

al., 2003), 200 crashes (Jonsson, 2005) or 300 crashes (Srinivasan, Carter, & Bauer, 2013). The 

HSM (AASHTO, 2010) advises using a sample of 30–50 locations with a total of at least 100 

crashes per year. However, others were critical about the one-size-fits-all approach. For example 

Lord (2006) provided guidance on necessary sample size based on sample mean, i.e. for example 

200 segments in case of average of 5 crashes per segment, or 1000 segments in case of average of 1 

crash per segment. (Note that these considerations do not apply in case of network screening, whose 

goal is to screen the complete network.) 

Data on crashes, traffic volumes and potentially other factors need to be assigned to all the sample 

sections/sites. Crash data are known for various biases, such as underreporting, location errors, 

severity misclassification or inaccurate identification of contributory factors. Also traffic volume 
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data may be prone to errors: typical measure of traffic volume AADT is an average, it is an 

aggregate of various vehicle types (Elvik, 2010).  

Choice of time period for crash and AADT data requires another decision. A 1- to 5-year period is 

usually recommended for safety ranking, with 3-year period being the most frequent (Elvik, 2008). 

Using longer time periods (beyond five years) may cause problems due to changes in conditions, 

such as a substantial increases in traffic volumes or layout changes, over the time period. Probably 

due to these issues there are no specific guidelines for time period choice. An exception was the 

simulation study of Cheng & Washington (2005) which concluded there is little gain in the network 

screening accuracy when using a period longer than 6 years. Also using several consistency tests, 4 

years were found sufficient for developing a CPM in a study by Ambros, Valentová, & Sedoník 

(2016). Usually a compromise between the need for early analysis of new treatments and the need 

for accumulating sufficient crashes to permit analysis is accepted (Elvik, 2010). 

Regarding data collection, differences between rural and urban settings are also worth mentioning. 

Traditionally most focus has been given to rural roads (as also evident from CPM reviews by 

Reurings, Janssen, Eenink, Elvik, Cardoso, & Stefan, 2005 or Yannis et al., 2014, 2015), as is also 

the focus of the present paper. In contrast, modelling urban safety is more challenging, due to 

higher presence of vulnerable road users and complex environments, including facilities for 

different road users, mixed land use or higher density of various intersection types, such as those 

signalised or with a roundabout layout.  

Ideal data sources are road agency asset inventories. Unfortunately, they may not be complete, and 

a modeller thus needs to combine various data sources into the geodatabase on their own. 

Additional surveys are also conducted, either in the field (pedestrian exposure, visibility, speed, 

etc.) or via online maps. Recent emergence of big data and open government policies (e.g. open 

data initiatives such as data.vic.gov.au) have aided these efforts substantially; it is feasible to pull 

together substantial amounts of road data from publicly available and road agencies’ own sources.  

Road network segmentation 

CPMs are typically developed either for road intersections or segments. In the latter case, 

segmentation has to be conducted, in order to divide the network into homogeneous segments, i.e. 

with constant values of explanatory variables. However, in case of multiple variables, this practice 

can naturally lead to short segments, which may for example complicate assigning crashes. Some 

authors set fixed segment lengths of several hundred meters (Cenek, 1997; Geyer et al., 2008; da 

Costa, Jacques, Pereira, Freitas, & Soares, 2015), or used patterns based on tangents and curves 

(Koorey, 2009; Turner, Singh, & Nates, 2012; Cafiso & DʼAgostino, 2013). On the other hand, for 

network screening, longer segments (1 – 5 km) are often used (Ragnøy, Christensen, & Elvik, 2002; 

Pardillo Mayora, Bojórquez Manzo, & Camarero Orive, 2006; Gitelman & Doveh, 2016). 

 

Explanatory variables 

Selection of explanatory variables should be guided by previously documented crash and injury risk 

factor evidence available from research literature. However, in practice it is often dictated simply by 

data availability. Explanatory variables generally include exposure, transport function, cross 

section, traffic control; less often variables describing alignment or road user behaviour are used 

(Reurings et al., 2005). When actual variables are not available, proxy variables may be used, e.g. 

abutting land use as a proxy for pedestrian movement counts. 

In order to identify the statistically significant variables, a stepwise regression approach is typically 

used. It may be applied either in a forward selection or a backward elimination manner; in both 

cases selected goodness-of-fit (GOF) measures are used to assess the statistical significance. 



Full Paper – Peer Reviewed Ambros et al.  

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

Common GOF measures include information criteria such as AIC or BIC, while others use for 

example scaled deviance (Fridstrøm, Ifver, Ingebrigtsen, Kulmala, & Thomsen, 1995; Turner et al., 

2003) or proportion of explained systematic variance (Kulmala, 1995; Ambros et al., 2016). 

Based on a number of explanatory variables (model complexity), CPMs may be simple (exposure-

only) or multivariate (fully-specified) (Persaud, 2001). Sawalha & Sayed (2006) warned against 

temptations to build overfit models, i.e. containing too many insignificant variables. In fact, a 

number of studies found that additional predictors are not as beneficial as expected (Peltola, 

Kulmala, & Kallberg, 1994; Wood, Mountain, Connors, Maher, & Ropkins, 2013; Saha, Alluri, & 

Gan, 2015). One should strive for parsimonious models, i.e. the ones containing as few explanatory 

variables as possible (Reurings et al., 2005). Such models enable simple interpretation and 

understanding, as well as easy updating (Ambros et al., 2016). 

On the other hand, in case of leaving out an influential explanatory variable due to unavailable data, 

so called “omitted variable bias” occurs. The bias results in biased parameter estimates that can 

produce erroneous inferences and crash frequency predictions (Lord & Mannering, 2010; Mitra & 

Washington, 2012; Mannering & Bhat, 2014). 

Model function forms and other statistical considerations 

Before modelling itself, exploratory data analysis should be conducted, in order to detect potential 

outliers, check the extreme values, potential mistakes, etc. 

Crash frequency (i.e. response variable) ideally should not involve mixed levels of crash severity 

and crash types, as it may produce uninterpretable results (Elvik, 2010). It is thus recommended to 

develop disaggregated CPMs (Reurings et al., 2005). Alternatively one may use the observed 

proportion of a given crash type or severity and apply it to the CPM that has been estimated for total 

crashes (Srinivasan & Bauer, 2013). However, this has been found a questionable practice, leading 

to estimation errors (Jonsson, Lyon, Ivan, Washington, van Schalkwyk, & Lord, 2009). The current 

recommendation is estimating separate CPMs by crash types. New Zealand practice is developing 

models for key (or common) crash types and, if necessary, scaling their predictions to represent 

total crash frequency (Turner et al., 2003), to allow for less common crash types. Some studies 

(Garach, de Oña, López, & Baena, 2016; Gitelman & Doveh, 2016) used sub-samples (for example 

stratification based on AADT under/over specific limits) in order to improve model quality. In any 

case, developing disaggregated CPMs obviously requires larger sample sizes. In terms of severity 

either models are developed by severity levels (usually with fatal and serious injury crashes 

combined), as with the ANRAM models (Jurewicz, Steinmetz, & Turner, 2014), or severity factors 

(proportions) are applied to models developed for all injury crashes (NZTA, 2016) or all crashes 

(including non-injury). 

To select the most suitable mathematical forms of explanatory variables, one may use graphical 

relationships to crash frequency (Arndt & Troutbeck, 2006), or use more complex techniques, such 

as empirical integral functions and cumulative residuals (CURE; Hauer & Bamfo, 1997). According 

to Hauer (2004), the model equation may have both multiplicative components (to represent the 

influence of continuous factors, such as lane width or shoulder type), and additive components (to 

account for the influence of point hazards, such as driveways or narrow bridges). Despite these 

recommendations, the typical modelling approach is often simple. The general model form of 

equation (1) is widely adopted. Exposure is usually modelled in terms of traffic volume, i.e. single 

AADT value for road segments, or product of major and minor AADTs for road intersections. 

There is no universal guidance and various function forms are used in the literature. For example, 

traffic volume is typically used in a power form, but some authors considered it jointly with an 

exponential form (so called Ricker model; Roque & Cardoso, 2014). Another example is segment 
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length, usually applied as an offset, i.e. with regression coefficient = 1, but often also in a power 

form (Hadi, Aruldhas, Chow, & Wattleworth, 1995; Reurings & Janssen, 2007; Roque & Cardoso, 

2014). 

According to Hauer (2001), segment length should also be considered when estimating the over-

dispersion parameter to be used in the empirical Bayes approach. However, the exact form of the 

relationship is not definite (Cafiso, Di Silvestro, Persaud, & Begum, 2010); in fact, not only length 

but also other variables may play a role (Geedipally, Lord, & Park, 2009).  

Model validation 

The goal of validation is proving whether the developed model is acceptable from both scientific 

and practical perspective. It is thus surprising that most of modelling guidelines seem to overlook 

this step (Maher & Summersgill, 1996; Hauer, 2004, 2015; Sawalha & Sayed, 2006; Wood & 

Turner, 2007; AASHTO, 2010; Srinivasan & Bauer, 2013; Fridstrøm, 2015). 

According to Oh, Lyon, Washington, Persaud, & Bared (2003), one may distinguish between 

internal validity (agreement with theoretical expectations and past research) and external validity 

(goodness-of-fit). The latter may be evaluated by comparing either models from two independent 

samples, or a model from a complete sample applied on selected sub-samples that have not been 

used in the model building. 

Using CPMs in network screening 

Previous reviews (Elvik, 2008; Montella, 2010) indicated that current practices are “not close to the 

state-of-the-art”. According to the EB method, CPMs should be used and their results (expected 

crash frequencies) combined with crash history (observed crash frequencies) to obtain so called 

“expected average crash frequency with empirical Bayes adjustment” (in short EB estimate). Apart 

from EB estimates, other variants exist, for example: 

• Potential for safety improvement (PSI), which represents the difference between EB 

estimate and expected frequency, i.e. the potential safety savings (Persaud et al., 1999). 

• Level of service of safety (LOSS), which labels the sites into four classes, based on 

deviations between observed and expected crash frequencies (Kononov & Allery, 2003). 

• Scaled difference, i.e. the difference between the observed and predicted crash frequencies, 

divided by the predicted standard deviation of the crash frequency (Butsick, Wood, & 

Jovanis, 2017). 

In Australia and New Zealand, where low-volume rural roads generate very low numbers of crashes 

per kilometre (or zero), CPMs can provide a continuous proxy measure of safety. In Australia the 

ANRAM model uses EB estimates of severe casualty crashes to remove the random variation in 

observed crash data: sites are prioritised simply on the EB estimate (Jurewicz et al., 2014).  

Given the variety of available methods, the Highway Safety Manual (AASHTO, 2010) notes that 

“using multiple performance measures to evaluate each site may improve the level of confidence in 

the results.” Hence sites may be ranked for treatment based on several different methods (Montella, 

2010; Yu, Liu, Chen, & Wang, 2014; Manepalli & Bham, 2016). Those that rank consistently high 

using several methods are the sites where treatment should be focused.  

Using CPMs in developing crash modification factors 

Crash modification factor (CMF) is a multiplicative factor used to compute the expected number of 

crashes after implementing a given countermeasure at a specific site. CMFs may be derived from 

before-after or cross-sectional studies; however, each method has its own challenges, and obtained 
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CMFs can thus often highly inconsistent (Gross, Persaud, & Lyon, 2010). Before and after studies 

are generally the preferred source of CMFs, particularly for the HSM. However they typically only 

look at features in isolation and so when the combined effects of features on crash occurrence is not 

the sum of the effects of each individual feature, then they may provide misleading results. Several 

solutions to developing multiple treatment CMFs have been proposed, without reaching definite 

conclusions (Elvik, 2009; Gross & Hamidi, 2011; Park, Abdel-Aty, & Lee, 2014). 

Cross-sectional studies (i.e. the ones based on CPMs) have been criticised for being more prone to 

non-causal safety effects, due to bias-by selection (Elvik, 2011; Carter, Srinivasan, Gross, & 

Council, 2012; Hauer, 2015). Bias-by-selection can occur when a treatment (like a cycle lane or 

crash barrier) is applied more often to sites that already have a crash problem than to those that do 

not. They do however provide a much better crash prediction for the combination of road features. 

In some cases CMFs are developed from CPMs where limited before and after studies are available. 

Using CPM tools 

The above-mentioned analytical steps (data preparation, exploratory analysis, modelling, 

calculations) are typically conducted in statistical software or spreadsheets. Nevertheless, for an end 

user it is beneficial to be able to visualize the results. These may take form of tables or map outputs, 

for example the identified hotspots or the lists of ranked segments. 

One option is using stand-alone software solutions, such as the following two from the USA: 

• IHSDM Crash Prediction Module estimates the frequency and severity of crashes on a 

highway using geometric design and traffic characteristics. This helps users evaluate an 

existing highway, compare the relative safety performance of design alternatives, and assess 

the safety cost-effectiveness of design decisions. (FHWA, 2003) 

• SafetyAnalyst (commercial software) Network Screening Tool identifies sites with potential 

for safety improvement. In addition, it is able to identify sites with high crash severities and 

with high proportions of specific crash types. (FHWA, 2010) 

Note that there are close links between IHSDM, SafetyAnalyst and Highway Safety Manual. 

According to Harwood, Torbic, Richard, & Meyer (2010), SafetyAnalyst Module 1 (network 

screening) is to be applied first, followed by Module 2 (diagnosis and countermeasure selection), 

Module 3 (economic appraisal and priority ranking) and IHSDM to perform safety analyses as part 

of the design process. 

The Finnish evaluation tool TARVA also deserves mentioning. Its purpose is to provide a common 

method and database for (1) predicting the expected number of crashes, and (2) estimating the 

safety effects of road safety improvements (Peltola, Rajamäki, & Luoma, 2013). Based on simple 

CPMs and pre-determined CMFs, it currently exists in Finnish and Lithuanian versions, with 

planned applications in other countries. 

Capabilities of network screening and road safety impact assessment are also built in commercial 

software PTV Visum Safety (http://vision-traffic.ptvgroup.com/en-us/products/ptv-visum-safety/). 

There are also applications in the form of Excel spreadsheets, for example British COBALT, 

Swedish TS-EVA or Norwegian CPMs for national and country roads (Høye, 2014, 2016). In the 

US, spreadsheets were developed for safety analysis of freeway segments and interchanges (ISAT: 

Torbic, Harwood, Gilmore, & Richard, 2007; ISATe: Bonneson, Geedipally, Pratt, & Lord, 2012). 

The Australian National Risk Assessment Model (ANRAM) tool, available to road agencies, is a 

network screening and prioritisation tool which uses CPMs for different road stereotypes, together 

with CMFs and observed crash data to estimate severe injury crashes across segmented road 

network (Jurewicz et al., 2014). ANRAM allows users to develop and estimate benefits of road 
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network and corridor treatment programs. This tool has gained wide use among state road agencies 

in Australia, particularly for the rural road networks where actual severe crashes are randomly 

distributed. ANRAM is available in a spreadsheet form, with planned online adaptations. 

New Zealand also has a history of various safety prediction tools. Turner, Tate, & Koorey (2007) 

stressed the practical need of such tools and after review of overseas applications, considered 

IHSDM as worth transferring into New Zealand conditions, for assessing new road designs. A later 

work (Turner & Brown, 2013) reviewed New Zealand spreadsheet applications, as well as 

experience with using and calibrating the ISAT tool from the USA. 

Challenges and opportunities 

The review indicated various challenges, as well as opportunities and solutions for the mentioned 

issues. They are briefly summarized in the following paragraphs. 

Data collection 

Sample sizes are the limiting factor. Unlike in the case of large USA and Canadian samples, smaller 

countries are limited in their samples of network and crash data. For example, Turner et al. (2003) 

mentioned, that New Zealand road network size limits the development of models for some 

segment and site types, e.g. interchanges. This factor also reduces chances of disaggregation CPMs 

into all crash types and severity levels. In addition, there is no universal guidance either on 

necessary sample size, or recommended time period for crash data. 

Road network segmentation 

Division of road network into segments is likely to be dictated by structure of national road 

databanks. For example in the Czech Republic, national traffic census (as the main source of AADT 

data) does not cover all minor roads; thus process of aggregating segments into longer segment 

including minor intersections was found feasible (Ambros, Sedoník, & Křivánková, 2017a). As the 

segments may be subject to further investigations, their length should be feasible for on-site visits or 

crash analyses.  

Use of long road segments, e.g. matching measured AADTs, can lead to loss of meaningful 

responsiveness to variables of interest to practitioners. Long segments are more likely to contain 

multiple design scenarios, e.g. pavements of different widths or multiple curves. Shorter segments 

are more likely to identify such changes and measure their influence. This is offset by loss fidelity 

of AADT and crash data location. This issue requires some optimisation based on experience with 

available data.  

Explanatory variables 

Network-wide data availability is again the guiding principle. Additional data collection is usually 

costly and limiting in perspective of future updating. For most practical applications, such as 

network screening, simple models (exposure-only) have been found sufficient (Srinivasan & Bauer, 

2013). A practice-driven approach was adopted in developing New Zealand rural road CPMs 

(Turner et al., 2012); when it was found that the statistically significant variables did not include the 

parameters that were of most interest to practitioners, two distinct models were developed: 

statistical models (best performing models according to GOF measures at 95% confidence levels) 

and practitioners’ models (containing also additional variables of interest to safety professionals, at 

confidence levels of 70% or more). 
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Model and function forms 

Simple CPM form (Equation 1) is used the most often. Traffic volumes (flows) should be adapted 

to the specific segment and intersection types. For example, New Zealand CPMs (NZTA, 2016) 

apply either product of flows or conflicting flows, based on the type of intersection, urban/rural 

settings and speed limits. 

Model validation 

The developed CPMs should be validated, either by comparing models from two independent 

samples, or comparing a model from a complete sample to the models based on selected sub-

samples (not used in the modelling). However, this practice is probably seen as difficult, since most 

guidelines do not mention this step. 

Using CPMs in network screening 

Network screening should be based on empirical Bayes (EB) method, which combines CPM 

predictions with observed crash frequencies to assess and rank the sites. There are several different 

methods; EB estimates and potential for safety improvement (PSI) are used the most often. 

Using CPMs in developing crash modification factors 

Although the practice of deriving crash modification factors (CMFs) from cross-sectional CPMs has 

been criticised, it is relatively common. Again there are various approaches: for example Park et al. 

(2014) tested six different methods of combining CMFs and concluded that one should not rely on 

only one of them. Interim solution is applying ‘rule-of-thumbs’, such as using the product of no 

more than three separate independent countermeasures (OECD, 2012) or reducing the product 

through multiplying by a ratio 2/3 (Turner, 2011). 

Using CPM tools 

Several tools for modelling and visualization exist; probably the most easy-to-use are spreadsheet 

applications. When implemented online (such as Finnish TARVA or planned version of Australian 

ANRAM), they enable periodical updates, as well as joint use of other online data sources. 

Increasingly, online business analytics software has been used to display CPM results in map 

format, often with dynamic filtering and computational functions. Examples include open source 

and free resources such as ArcGIS Online, QGIS, Tableau, or Microsoft Power BI. These solutions 

make it easy for practitioners to access and understand the value of CPMs.  

Summary and conclusions 

A number of steps have been reviewed: from data collection and road network segmentation to 

choosing variables and function forms, validating models and using them in practice, including 

description of available tools. From the review it is obvious that developing CPMs is not a 

straightforward task: there is a number of available choices and decision during the process (without 

definite guidance), which explains the diversity of approaches and techniques, as well as resulting 

models developed worldwide. While this may be interesting from a research perspective, it 

definitely limits understanding and application by practitioners, and complicates international 

comparability or transferability. There is a need to identify the solutions, which will be scientifically 

sound and valid, while also feasible with regards to real-life conditions and needs. 

The main point is that the end users of CPMs are the practitioners, i.e. road agencies, which “cannot 

always afford the luxury of doing state-of-the-art crash modelling” (Elvik, 2010). The review aimed 
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to answer the original questions, how and why should they consider using CPMs? The answers may 

be following: 

• CPMs are valuable tools, which help link crashes with risk factors. This is especially 

valuable in current conditions of scattered crash occurrence (less crash black-spots), where 

traditional crash-based approaches do not work well. 

• Developing and using CPMs has its challenges (as described above). However, these may be 

minimised by increased communication between researchers (who develop CPMs) and users 

(agencies), resulting in easy-to-use tools. However it is important that these tools do not 

become black-boxes, and that users do have a basic understanding of CPMs and CMFs, and 

that local CPMs and CMFs can be used in the tools (or that there is a method to calibrate the 

CPMs and CMFs to local conditions). 

• Applying network-wide CPMs enables performing effective road safety impact assessment 

and network screening. 

Acknowledgements: The paper was produced with the financial support of Czech Ministry of 

Education, Youth and Sports under the National Sustainability Programme I project of Transport 

R&D Centre (LO1610), using the research infrastructure from the Operation Programme Research 

and Development for Innovations (CZ.1.05/2.1.00/03.0064). 

References  

AASHTO (2010). Highway Safety Manual. First Edition. Washington, DC: AASHTO. 

Ambros, J., Valentová, V., & Sedoník, J. (2016). Developing updatable crash prediction model for 

network screening: Case study of Czech two-lane rural road segments. Transportation 

Research Record, 2583, 1–7. 

Ambros, J., Sedoník, J., & Křivánková, Z. (2017a). How to simplify road network safety screening: 

Two case studies. Presented at 96th TRB Annual Meeting, Washington, DC. 

Arndt, O., & Troutbeck, R. (2006). Techniques for analysing the effect of road geometry on 

accident rates using multifactor studies. Presented at 22nd ARRB Conference, Canberra, ACT. 

Basu, S., & Saha, P. (2017). Regression models of highway traffic crashes: A review of recent 

research and future research needs. Procedia Engineering, 187, 59–66. 

Bonneson, J. A., Geedipally, S., Pratt, M. P., & Lord, D. (2012). Safety Prediction Methodology 

and Analysis Tool for Freeways and Interchanges. Project 17-45 Final Report. Washington, 

DC: TRB. Retrieved from http://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP17-

45_FR.pdf 

Bornheimer, C., Schrock, S., Wang, M., & Lubliner, H. (2012). Developing a regional safety 

performance function for rural two-lane highways. Presented at 91st TRB Annual Meeting, 

Washington, DC. 

Butsick, A. J., Wood, J. S., & Jovanis, P. P. (2017). Using network screening methods to determine 

locations with specific safety issues: A design consistency case study. Accident Analysis & 

Prevention, 106, 223–233. 

Cafiso, S., Di Silvestro, G., Persaud, B., & Begum, M. A. (2010). Revisiting variability of 

dispersion parameter of safety performance for two-lane rural roads. Transportation Research 

Record, 2148, 38–46. 

Cafiso, S., & DʼAgostino, C. (2013). Investigating the influence of segmentation in estimating 

safety performance functions for roadway sections. Presented at 92nd TRB Annual Meeting, 

Washington, DC. 



Full Paper – Peer Reviewed Ambros et al.  

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

Carter, D., Srinivasan, R., Gross, F., & Council, F. (2012). Recommended Protocols for Developing 

Crash Modification Factors. NCHRP Project 20-07, Task 314. Washington, DC: TRB. 

Retrieved from http://www.cmfclearinghouse.org/collateral/CMF_Protocols.pdf 

Cenek, P. D., Davies, R. B., McLarin, M. W., Griffith-Jones, G., & Locke, N. J. (1997). Road 

Environment and Traffic Crashes. Research Report 79. Wellington, NZ: Transfund. 

Cheng, W., & Washington, S. (2005). Experimental evaluation of hotspot identification methods. 

Accident Analysis & Prevention, 37, 870–881. 

da Costa, J. O., Jacques, M. A. P., Pereira, P. A. A., Freitas, E. F., & Soares, F. E. C. (2015). 

Portuguese two-lane highways: Modelling crash frequencies for different temporal and spatial 

aggregation of crash data. Transport, 30, 1–12. 

Eenink, R., Reurings, M., Elvik, R., Cardoso, J., Wichert, S., & Stefan, C. (2008). Accident 

Prediction Models and Road Safety Impact Assessment: recommendations for using these 

tools. RIPCORD-ISEREST project deliverable 2. 

Elvik, R. (2008). A survey of operational definitions of hazardous road locations in some European 

countries. Accident Analysis & Prevention 40, 1830–1835. 

Elvik, R. (2009). An exploratory analysis of models for estimating the combined effects of road 

safety measures. Accident Analysis & Prevention, 41, 876–880. 

Elvik, R. (2010). Assessment and applicability of road safety management evaluation tools: Current 

practice and state-of-the-art in Europe. Report 1113/2010. Oslo, Norway: Institute of 

Transport Economics (TØI). Retrieved from https://www.toi.no/getfile.php?mmfileid=16252 

Elvik, R. (2011). Assessing causality in multivariate accident models. Accident Analysis & 

Prevention, 43, 253–264. 

FHWA (2003). Interactive Highway Safety Design Model (IHSDM) – Crash Prediction Module 

(CPM) Userʼs Manual. McLean, VA: FHWA. 

FHWA (2010). SafetyAnalyst: Software Tools for Safety Management of Specific Highway Sites. 

White Paper for Module 1 – Network Screening. McLean, VA: FHWA. 

Fridstrøm, L., Ifver, J., Ingebrigtsen, S., Kulmala, R., & Thomsen L. K. (1995). Measuring the 

contribution of randomness, exposure, weather, and daylight to the variation in road accident 

counts. Accident Analysis & Prevention, 27, 1–20. 

Fridstrøm, L. (2015). Disaggregate Accident Frequency and Risk Modelling: A Rough Guide. 

Report 1403/2015. Oslo, Norway: Institute of Transport Economics (TØI). Retrieved from 

https://www.toi.no/getfile.php?mmfileid=40414 

Garach, L., de Oña, J., López, G., & Baena, L. (2016). Development of safety performance 

functions for Spanish two-lane rural highways on flat terrain. Accident Analysis & Prevention, 

95, 250–265. 

Geedipally, S. R., Lord, D., & Park, B.-J. (2009). Analyzing different parameterizations of the 

varying dispersion parameter as a function of segment length. Transportation Research 

Record, 2103, 108–118. 

Geyer, J., Lankina, E., Chan, C.-Y., Ragland, D., Pham, T., & Sharafsaleh, A. (2008). Methods for 

Identifying High Collision Concentration Locations for Potential Safety Improvements. 

Report UCB-ITS-PRR-2008-35. Berkeley, CA: University of California. Retrieved from 

https://safetrec.berkeley.edu/sites/default/files/publications/methods_for_identifying_high_col

lision.pdf 



Full Paper – Peer Reviewed Ambros et al.  

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

Gitelman, V., & Doveh, E. (2016). Safety management of non-urban roads in Israel: An application 

of empirical Bayes evaluation. Journal of Traffic and Transportation Engineering, 4, 259–

269. 

Gross, F., Persaud, B., & Lyon, C. (2010). A Guide to Developing Quality Crash Modification 

Factors. Report FHWA-SA-10-032. Washington, DC: FHWA. Retrieved from 

https://safety.fhwa.dot.gov/tools/crf/resources/fhwasa10032/fhwasa10032.pdf 

Gross, F., & Hamidi, A. (2011). Investigation of Existing and Alternative Methods for Combining 

Multiple CMFs. T-06-013 Highway Safety Improvement Program Technical Support, Task 

A.9. Retrieved from 

http://www.cmfclearinghouse.org/collateral/Combining_Multiple_CMFs_Final.pdf 

Hadi, M. A., Aruldhas, J., Chow, L.-F., & Wattleworth, J. A. (1995). Estimating safety effects of 

cross-section design for various highway types using negative binomial regression. 

Transportation Research Record, 1500, 169–177. 

Harwood, D. W., Torbic, D. J., Richard, K. R., & Meyer, M. M. (2010). SafetyAnalyst: Software 

Tools for Safety Management of Specific Highway Sites. Report FHWA-HRT-10-063. 

McLean, VA: FHWA. 

Hauer, E. (1997). Observational Before-After Studies in Road Safety: Estimating the Effect of 

Highway and Traffic Engineering Measures on Road Safety. Oxford, UK: Pergamon. 

Hauer, E., & Bamfo, J. (1997). Two tools for finding what function links the dependent variable to 

the explanatory variables. Presented at ICTCT 97 Conference, Lund, Sweden. 

Hauer, E. (2001). Overdispersion in modelling accidents on road sections and in Empirical Bayes 

estimation. Accident Analysis & Prevention, 33, 799–808. 

Hauer, E. (2004). Statistical road safety modeling. Transportation Research Record, 1897, 81–87. 

Hauer, E. (2015). The Art of Regression Modeling in Road Safety. Switzerland: Springer. 

Høye, A. (2014). Development of crash prediction models for national and county roads in Norway. 

Report 1323/2014. Oslo, Norway: Institute of Transport Economics (TØI). Retrieved from 

https://www.toi.no/getfile.php?mmfileid=36329 

Høye, A. (2016). Development of crash prediction models for national and county roads in Norway 

(2010-2015). Report 1522/2016. Oslo, Norway: Institute of Transport Economics (TØI). 

Retrieved from https://www.toi.no/getfile.php?mmfileid=44939 

Jonsson, T. (2005). Predictive models for accidents on urban links: A focus on vulnerable road 

users. Bulletin 226. Lund, Sweden: Lund University. Retrieved from 

http://lup.lub.lu.se/search/ws/files/4434766/26516.pdf 

Jonsson, T., Lyon, C., Ivan, J., Washington, S., van Schalkwyk, I., & Lord, D. (2009). Investigating 

differences in safety performance functions estimated for total crash count and for crash 

county by collision type. Transportation Research Record, 2102, 115–123. 

Jurewicz, C., Steinmetz, L., & Turner, B. (2014). Australian National Risk Assessment Model. 

Publication AP-R451-14. Sydney, NSW: Austroads. 

Kim, E., Lee, D., Choi, B.-G., Choi, S.-E., & Choi, E. (2010). Applicability of a Korea highway 

safety evaluation model compared to the crash prediction module of IHSDM. Presented at 

12th World Conference on Transport Research (WCTR), Lisbon, Portugal. 

Kononov, J., & Allery, B. (2003). Level of service of safety: Conceptual blueprint and analytical 

framework. Transportation Research Record, 1840, 57–66. 



Full Paper – Peer Reviewed Ambros et al.  

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

Koorey, G. (2009). Road data aggregation and sectioning considerations for crash analysis. 

Transportation Research Record, 2103, 61–68. 

Kulmala, R. (1995). Safety at rural three- and four-arm junctions: Development and application of 

accident prediction models. Publication 233. VTT Technical Research Centre of Finland, 

Espoo, Finland. 

Lord, D. (2006). Modeling motor vehicle crashes using Poisson-gamma models: Examining the 

effects of low sample mean values and small sample size on the estimation of the fixed 

dispersion parameter. Accident Analysis & Prevention, 38, 751–766. 

Lord, D., & Mannering, F. (2010). The statistical analysis of crash-frequency data: A review and 

assessment of methodological alternatives. Transportation Research Part A, 44, 291–305. 

Maher, M. J., & Summersgill, I. (1996). A comprehensive methodology for the fitting of predictive 

accident models. Accident Analysis & Prevention, 28, 281–296. 

Manepalli, U. R. R., & Bham, G. H. (2016). An evaluation of performance measures for hotspot 

identification. Journal of Transportation Safety & Security, 8, 327–345. 

Mannering, F. L., & Bhat, C. R. (2014). Analytic methods in accident research: Methodological 

frontier and future directions. Analytic Methods in Accident Research, 1, 1–22. 

Mitra, S., & Washington, S. (2012). On the significance of omitted variables in intersection crash 

modeling. Accident Analysis & Prevention, 49, 439–448. 

Montella, A. (2010). A comparative analysis of hotspot identification methods. Accident Analysis & 

Prevention, 42, 571–581. 

NZTA (2016). Crash Estimation Compendium (New Zealand Crash Risk Factors Guideline). 

Wellington, NZ: NZTA. Retrieved from https://www.nzta.govt.nz/assets/resources/economic-

evaluation-manual/economic-evaluation-manual/docs/crash-risk-factors-guidelines-

compendium.pdf 

OECD (1997). Road Safety Principles and Models: Review of Descriptive, Predictive, Risk and 

Accident Consequence Models. Paris, France: OECD. Retrieved from 

http://www.oecd.org/officialdocuments/ 

publicdisplaydocumentpdf/?cote=OCDE/GD(97)153&docLanguage=En 

OECD (2012). Sharing Road Safety: Developing an International Framework for Crash 

Modification Functions. Paris, France: OECD. Retrieved from 

http://www.oecd.org/publications/sharing-road-safety-9789282103760-en.htm 

Oh, J., Lyon, C., Washington, S., Persaud, B., & Bared, J. (2003). Validation of FHWA crash 

models for rural intersections: Lessons learned. Transportation Research Record, 1840, 41–

49. 

Pardillo Mayora, J. M., Bojórquez Manzo, R., & Camarero Orive, A. (2006). Refinement of 

accident prediction models for Spanish national network. Transportation Research Record, 

1950, 65–72. 

Park, J., Abdel-Aty, M., & Lee, C. (2014). Exploration and comparison of crash modification 

factors for multiple treatments on rural multilane roadways. Accident Analysis & Prevention, 

70, 167–177. 

Peltola, H., Kulmala, R., & Kallberg, V.-P. (1994). Why use a complicated accident prediction 

model when a simple one is just as good? Presented at 22nd PTRC Summer Annual Meeting, 

Warwick, UK. 

Peltola, H., Rajamäki, R., & Luoma, J. (2013). A tool for safety evaluations of road improvements. 

Accident Analysis & Prevention, 60, 277–288. 



Full Paper – Peer Reviewed Ambros et al.  

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

Persaud, B., Lyon, C., & Nguyen, T. (1999). Empirical Bayes procedure for ranking sites for safety 

investigation by potential for safety improvement. Transportation Research Record, 1665, 7–

12. 

Persaud, B. N. (2001). Statistical Methods in Highway Safety Analysis: A Synthesis of Highway 

Practice. NCHRP Synthesis 295. Washington, DC: TRB. Retrieved from 

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_295.pdf 

Persaud, B., Lord, D., & Palmisano, J. (2002). Calibration and transferability of accident prediction 

models for urban intersections. Transportation Research Record, 1784, 57–64. 

Persaud, B., Saleem, T., Faisal, S., Lyon, C., Chen, Y., & Sabbaghi, A. (2012). Adoption of 

Highway Safety Manual Predictive Methodologies for Canadian Highways. Presented at 2012 

TAC Conference, Fredericton, Canada. 

Ragnøy, A., Christensen, P., & Elvik, R. (2002). Injury severity density: A new approach to 

identifying hazardous road sections. Report 618/2002. Oslo, Norway: Institute of Transport 

Economics (TØI). 

Reurings, M., Janssen, T., Eenink, R., Elvik, R., Cardoso, J., & Stefan, C. (2005). Accident 

prediction models and road safety impact assessment: a state-of-the-art. RIPCORD-ISEREST 

project deliverable 2.1. 

Reurings, M., & Janssen, T. (2007). Accident prediction models for urban and rural carriageways. 

Report R-2006-14. Leidschendam, the Netherlands: SWOV. Retrieved from 

https://www.swov.nl/en/publication/accident-prediction-models-urban-and-rural-carriageways 

Roque, C., & Cardoso, J. L. (2014). Investigating the relationship between run-off-the-road crash 

frequency and traffic flow through different functional forms. Accident Analysis & 

Prevention, 63, 121–132. 

Sacchi, E., Persaud, B., & Bassani, M., 2012. Assessing international transferability of Highway 

Safety Manual crash prediction algorithm and its components. Transportation Research 

Record, 2279, 90–98. 

Saha, D., Alluri, P., & Gan, A. (2015). Prioritizing Highway Safety Manual’s crash prediction 

variables using boosted regression trees. Accident Analysis & Prevention, 79, 133–144. 

Sawalha, Z., & Sayed, T. (2006). Traffic accident modeling: Some statistical issues. Canadian 

Journal of Civil Engineering, 33, 1115–1124. 

Srinivasan, R., & Bauer, K. (2013). Safety Performance Function Development Guide: Developing 

Jurisdiction-Specific SPFs. Report FHWA-SA-14-005. Washington, DC: FHWA. Retrieved 

from https://safety.fhwa.dot.gov/rsdp/downloads/spf_development_guide_final.pdf 

Srinivasan, R., Carter, D., & Bauer, K. (2013). Safety Performance Function Decision Guide: SPF 

Calibration vs SPF Development. Report FHWA-SA-14-004. Washington, DC: FHWA. 

Retrieved from https://safety.fhwa.dot.gov/rsdp/downloads/spf_decision_guide_final.pdf 

Sun, X., Li, Y., Magri, D., & Shirazi, H. H. (2006). Application of “Highway Safety Manual” draft 

chapter: Louisiana experience. Transportation Research Record, 1950, 55–64. 

Torbic, D. J., Harwood, D. W., Gilmore, D. K., & Richard, K. R., 2007. Interchange Safety 

Analysis Tool (ISAT): User Manual. Report FHWA-HRT-07-045. McLean, VA: FHWA. 

Retrieved from https://www.fhwa.dot.gov/publications/research/safety/07045/07045.pdf 

Turner, B. (2011). Estimating the safety benefits when using multiple road engineering treatments. 

Road Safety Risk Reporter 11. Retrieved from 

https://www.arrb.com.au/admin/file/content13/c6/RiskReporterIssue11.pdf 



Full Paper – Peer Reviewed Ambros et al.  

 

Proceedings of the 2017 Australasian Road Safety Conference 
10 – 12 October, Perth, Australia 

 

Turner, S., Durdin, P., Bone, I., & Jackett, M. (2003). New Zealand accident prediction models and 

their applications. Presented at 21st ARRB Conference, Cairns, Qld. 

Turner, S., Tate, F., & Koorey, G. (2007). A SIDRA for Road Safety. Presented at 2007 IPENZ 

Transportation Group Conference, Tauranga, NZ. 

Turner, S., Singh, R., & Nates, G. (2012). The next generation of rural road crash prediction 

models: final report. Research Report 509. Wellington, NZ: NZTA. Retrieved from 

http://www.nzta.govt.nz/assets/resources/research/reports/509/docs/509.pdf 

Turner, S., & Brown, M. (2013). Pushing the Boundaries of Road Safety Risk Analysis. Presented 

at 2013 IPENZ Transportation Group Conference, Dunedin, NZ. 

Wood, A. G., Mountain, L. J., Connors, R. D., Maher, M. J., & Ropkins, K. (2013). Updating 

outdated predictive accident models. Accident Analysis & Prevention, 55, 54–66. 

Wood, G. R., & Turner, S. (2007). Towards a “start-to-finish” approach to the fitting of traffic 

accident models. In A. De Smet (Ed.)., Transportation Accident Analysis and Prevention (pp. 

239–250). New York, NY: Nova Science. 

Xie, F., Gladhill, K., Dixon, K. K., & Monsere, C. M. (2011). Calibrating the Highway Safety 

Manual predictive models for Oregon state highways. Transportation Research Record, 2241, 

19–28. 

Yannis, G., Dragomanovits, A., Laiou, A., Richter, T., Ruhl, S., La Torre, F., Domenichini, L., 

Fanfani, F., Graham, D., Karathodorou, N., & Li, H. (2014). Overview of existing Accident 

Prediction Models and Data Sources. PRACT project deliverable D1. Retrieved from 

http://www.practproject.eu/Project-Library/ 

Yannis, G., Dragomanovits, A., Laiou, A., Richter, T., Ruhl, S., Calabretta, F., Graham, D., 

Karathodorou, N., La Torre, F., Domenichini, L., & Fanfani, F. (2015). Inventory and Critical 

Review of existing APMs and CMFs and related Data Sources. PRACT project deliverable 

D4. Retrieved from http://www.practproject.eu/Project-Library/ 

Young, J., & Park, P. Y. (2013). Benefits of small municipalities using jurisdiction-specific safety 

performance functions rather than the Highway Safety Manualʼs calibrated or uncalibrated 

safety performance functions. Canadian Journal of Civil Engineering, 40, 517–527. 

Yu, H., Liu, P., Chen, J., & Wang, H. (2014). Comparative analysis of the spatial analysis methods 

for hotspot identification. Accident Analysis & Prevention, 66, 80–88. 


